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In paper I �Vassal et al., Phys. Rev. E 77, 011302 �2008�� of this contribution, the effective diffusion
properties of particulate media with highly conductive particles and particle-particle interfacial barriers have
been investigated with the homogenization method with multiple scale asymptotic expansions. Three different
macroscopic models have been proposed depending on the quality of contacts between particles. However,
depending on the nature and the geometry of particles contained in representative elementary volumes of the
considered media, localization problems to be solved to compute the effective conductivity of the two first
models can rapidly become cumbersome, time and memory consuming. In this second paper, the above
problem is simplified and applied to networks made of slender, wavy and entangled fibers. For these types of
media, discrete formulations of localization problems for all macroscopic models can be obtained leading to
very efficient numerical calculations. Semianalytical expressions of the effective conductivity tensors are also
proposed under simplifying assumptions. The case of straight monodisperse and homogeneously distributed
slender fibers with a circular cross section is further explored. Compact semianalytical and analytical estima-
tions are obtained when fiber-fiber contacts are perfect or very poor. Moreover, two discrete element codes
have been developed and used to solve localization problems on representative elementary volumes for the
same types of contacts. Numerical results underline the significant roles of the fiber content, the orientation of
fibers as well as the relative position and orientation of contacting fibers on the effective conductivity tensors.
Semianalytical and analytical predictions are discussed and compared with numerical results.
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I. INTRODUCTION

Improving thermal or electrical conductivity of polymer
composites using highly conductive particles made of carbon
�carbon black, fibers or nanotubes�, aluminum �powder or
fibers� or copper �powder or fibers� becomes an interesting
solution for industrial applications like heat sinks, electronic
components, breaking systems, etc. Within that context, fi-
brous conductive particles are of great interest, since the for-
mation of a connected cluster that crosses samples and en-
hances conduction may appear for a very low volume
fraction of fibers. However, diffusion phenomena within this
kind of materials still remain difficult to predict: effective
transport properties strongly depend on the volume fraction
and the shape �1� of particles as well as on the particle-
particle contact zones that may exhibit possible interfacial
barriers and alter conduction �2–5�. They are also largely
affected by the spatial distribution and the orientation of par-
ticles, both of them often being induced during the process-
ing phase �6–9�. Likewise, because of the very high contrast
between the conductivities of the matrix and the particles,
predictions given by well-known bounds are usually less sat-
isfactory for this kind of materials �10–12�. To circumvent
the problem, a common assumption consists in neglecting
the conduction phenomena in the matrix, except in the vicin-
ity of particle-particle contacts. Within this framework, many

models �13–31� have been obtained, some of them being
especially dedicated to fibrous media �17,24–31�. They ana-
lyze the role of the volume fraction, the aspect ratio and the
waviness of fibers on the effective transport properties. How-
ever, few of them have studied transient loadings as well as
the roles of fiber-fiber contacts �27� and fiber orientation
�30–32�.

The goal of this study is to further analyze these aspects
and to propose effective models for the transient diffusion in
such fibrous media taking into account the quality of fiber-
fiber contacts. In that respect, we have presented in paper I
�39� a possible way to obtain the structure and the properties
of the corresponding effective continua. For that purpose, the
homogenization with multiple scale asymptotic expansions
was used. Provided a good separation of scales between local
heterogeneities and the macroscopic lengths of samples �or
excitation�, three equivalent macroscopic media have been
identified, depending on the quality of particle-particle con-
tacts. These continua obey the standard dimensionless mac-
roscopic heat balance equation

ce�Ṫe� = − �x� · qe� + re�, �1�

where the dimensionless macroscopic temperature Te� is the
first-order temperature of the asymptotic expansion of the

temperature field, i.e., Te�=T�0��, Ṫe� its rate, and where ce�

and re�, respectively, represent the effective volumetric heat
capacity and external heat source. ce� and re� are obtained by
simply averaging local heat capacities �respectively, heat*laurent.orgeas@hmg.inpg.fr
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sources� over the whole volume of the considered represen-
tative elementary volume �REV�. The macroscopic heat flow
qe� involved in the last equation follows a standard Fourier’s
law:

qe� = − �e� · �x�T�0��, �2�

where �e� is the effective conductivity tensor. �e� can be
determined by solving steady state and linear localization
problems on REV’s. Such boundary value problems depend
on the quality of fiber-fiber contacts.

For model III, contacts are highly resistive and the local-
ization problem can be set in a reduced discrete form, i.e., it
is a system of independent linear equations in which tem-

peratures T̄�
�1��’s are unknown. On each fiber p� �of center of

mass G�
�� contained in the REV, one must solve the follow-

ing equation:

�
C�

�i��
� h̃i��

� ����T̄�1�� + G�
�G�

� · �x�T�0��� = 0, �3�

where the macroscopic temperature gradient �x�T�0�� is given

and constant, ���T̄�1��= T̄�
�1��− T̄�

�1��, C� is the set of connec-
tions of particle p� and where

h̃i��
� =

1

�i��
� �

�i��
�

hi��
� dS� �4�

is the average of the heat transfer coefficient hi��
� on the

surface �i��
� of the connection i��, i.e., the ith contact be-

tween particles p� and p�. Solving Eq. �3� then allows to
compute the macroscopic heat flow with the following dis-
crete expression, to be written over the set CREV of fiber-fiber
connections contained in the REV �of volume �REV

� �:

qe� = −
1

�REV
� �

CREV

��i��
� h̃i��

� ����T̄�1��

+ G�
�G�

� · �x�T�0���G�
�G�

�� . �5�

For model I, contacts are highly conductive and the local-
ization problem to be solved for each fiber p� �of volume
noted ��

� and contact surface with the insulating matrix
noted ��

�� reads as

�y� · q�
�1�� = 0, in ��

� , �6a�

q�
�1�� = − ��

� · ��y�T�
�1�� + �x�T�0��� in ��

� , �6b�

q�
�1�� · n̂� = 0 on ��

� , �6c�

T�
�1�� = T�

�1��, on �i��
� , �6d�

q�
�1�� · n̂i�� = q�

�1�� · n̂i�� on �i��
� , �6e�

where �y� is the differential operator with respect to the mi-
croscopic space variable y�, ��

� is the surface of fibers in
contact with the matrix, n̂ are external unit normal vectors to
the considered surfaces. �x�T�0�� is still a constant and given
and T�

�1�� are the unknown temperatures to be determined
within fiber p� �of local conductivity tensor ��

��. Solving

system of Eqs. �6a�–�6e� then allows to compute the macro-
scopic heat flow

qe� = �q�
�1��� =

1

�REV
� �

PREV

�
��

�
q�

�1��dV�, �7�

where PREV is the set of fibers in the REV.
For model II, which corresponds to the intermediate

physical situation, the localization problem is identical to
system of Eqs. �6a�–�6e�, except for Eq. �6d� that must be
replaced by

q�
�1�� · n̂i�� = − hi��

� ���T�1�� on �i��
� , �8�

the expression of the effective heat flow �7� remaining un-
changed.

It is then easy to see from Eqs. �2� and �5� �or system of
Eqs. �6a�–�6e�� that �e� can be estimated by imposing suc-
cessively three unit independent macroscopic temperature
gradients �x�T�0��. For example, when �x�T�0��= ê1, one ob-
tains �1i

e�=−qi
e� �i� 	1,2 ,3
�. Also notice that for model III,

the localization problem �3� is compact and discrete so that
the numerical estimation of �e� can be carried out quite eas-
ily with complex fibrous microstructures exhibiting a large
number of fibers. Unfortunately, this is not the case for mod-
els I and II, where the localization problem �6a�–�6e� to be
solved can rapidly become complicated and cumbersome.

The first objective of this paper is to reduce and simplify
this localization problem, by accounting for the slender
shape of fibers �Sec. II A�. Physical assumptions can then be
stated �Sec. II B� in order to obtain discrete formulations of
the problem �6a�–�6e� �Sec. II C�, the macroscopic heat flow
�7� �Sec. II D� and the corresponding effective conductivity
tensor �Sec. II E�.

From the three discrete formulations, the second objective
of the present work is to give numerical, semianalytical, and
analytical estimates of the effective conductivity tensors. In
that respect, the case of straight and monodisperse cylindri-
cal fibers with circular cross section is then further explored.
Semianalytical and analytical expressions of the effective
conductivity tensors are obtained for highly conductive
�model I� and highly resistive �model III� fiber-fiber contacts
�Sec. II F�. Therefrom, REV’s with straight fibers are gener-
ated and used to solve numerically localization problems
with discrete element codes �Sec. III�. The influences of the
quality of fiber-fiber contacts, the volume fraction of fibers,
the orientation of fibers as well as the relative position and
orientation of contacting fibers on the effective conductivity
tensor are hence emphasized. Last, semianalytical and ana-
lytical predictions are compared with numerical results and
their corresponding simplifying assumptions are discussed.

II. DISCRETE HOMOGENIZED FORMULATIONS

A. Geometrical assumptions

As shown in Fig. 1, we consider REV’s �volume �REV�
made of PREV slender and entangled wavy fibers p� �volume
��

�� of length l�
� and constant cross section S�

� �characteristic
value Sc�. The node Mi�

� refers to the projection on the center
line of p� of the ith contact point. The node Mi�

� is defined
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similarly on the fiber p�. At the ith contact point or connec-
tion noted i�� �=i���, the distance between the center lines
of two touching particles p� and p� is noted di��

� = �yi��
� �

= �Mi�
� Mi�

� �. The set of the CREV connections i�� in the REV
is noted CREV and that of the C� connections of fiber p� is
noted C�. The external surface of a fiber p� can be split in:
��

� , the surface of the fiber in contact with the matrix, and
�i��

� , the surface of the ith contact in the REV, between fibers
p� and p�. As shown in Fig. 1, the local unit vector tangent
to the center line of fiber p� between node Mi�

� and Mj�
� is

noted êij�. By noting lij�
� the length of the piece of fiber

between these nodes and yij�
� =Mi�

� M j�
� = lij�

s� êij�
s , the local

waviness of the fiber is defined as �ij�
� = lij�

� / lij�
s� .

B. Physical assumptions for models I and II

In order to simplify the localization problem �6a�–�6e� it
is now supposed that:

�1� Vector êij� tangent to the centerlines of the fibers is
associated with the principal conductivity of the fibers ��I

� ,
further noted ��

� and which is supposed as a constant along
the fibers.

�2� Between nodes Mi�
� and Mj�

� of fiber p�, the local heat
flow q�

�1�� �6b� has a constant intensity and is parallel to the
centerline of fiber p�. The intensity of q�

�1�� is supposed to be
equivalent to the intensity that would be in the straight re-
sistor Mi�

� Mj�
� of the same cross section S�

� , length lij�
s� , and

conductivity ��
� /�ij�

� . Therefore, the heat flow q�
�1�� in the

fiber p� between Mi�
� and Mj�

� , noted qij�
�1��, can be estimated

by

qij�
�1�� � −

��
�

�ij�
� 
�ijT�

�1��

lij�
s�

+ êij�
s · �x�T�0���êij�. �9�

�3� For model I, based on Eq. �6d�, the first-order tem-
peratures T�

�1�� at nodes Mi�
� and Mi�

� are supposed to be
equal,

Ti�
�1�� � Ti�

�1��. �10�

�4� For model II, based on Eq. �8�, the dimensionless local
heat flow q�

�1�� entering the bar bi� through the contact zone
�i��

� is noted qi��
�1�� and is supposed as follows:

qi��
�1�� � − hi��

� ���Ti
�1��êi��, �11�

where êi��=yi��
� / �yi��

� �.
When making such assumptions, a simple slender body

model is achieved: the larger the lengths lij�
� with respect to

the characteristic lengths of surfaces S�
� and �i��

� , the better
the approximations �9�–�11�.

C. Discrete form of the fluctuation problem
for models I and II

As illustrated in Fig. 1, let us introduce the bar bi�, as the
union of the second half of the piece of fiber between Mj�

�

and Mi�
� and the first half of the piece of fiber between Mi�

�

and Ml�
� . This bar contains node Mi�

� and its neighbors are
bj� and bl� that contain, respectively, nodes Mj�

� and Ml�
� .

The set of the B� bars of p� is noted B�. Moreover, the
junction ij� between bars bi� and bj� of the same fiber p� is
also introduced �the set of the J� junctions ij� in p� will be
noted J�, the set of the JREV junctions ij� in the REV will be
noted JREV�. Therefrom, the boundary value problem
�6a�–�6e� in the bar bi� is now considered: �i� integrating Eq.
�6a� on the volume �i�

� of the bar bi�, �ii� using the diver-
gence theorem, and �iii� accounting for the boundary condi-
tions �6b�, �6c�, and �8� yield

∀bi�, �
�ij�

�
qij�

�1�� · êij�
s dS� + �

�il�
�

qil�
�1�� · êil�

s dS�

+ �
�i��

�
qi��

�1�� · êi��dS� = 0. �12�

By accounting for constitutive Eqs. �9� and �11�, the last
relation becomes

∀bi�,
��

�S�
�

�ij�
� 
�ijT�

�1��

lij�
s�

+ êij�
s · �x�T�0���

+
��

�S�
�

�il�
� 
�ilT�

�1��

lil�
s�

+ êil�
s · �x�T�0���

+ �i��
� h̃i��

� ���Ti
�1�� = 0. �13�

The last term on the left-hand side of Eq. �13� is vanishing in
the case of model I, in accordance with Eq. �10�. Expression
�13� represents a system of 2CREV �CREV for model I� linear
equations to be solved for the calculation of the 2CREV �CREV

for model I� unknown temperatures Ti�
�1��. Such a system

must be solved for three unit macroscopic temperature gra-
dients �x�T�0��= êk �k� 	1,2 ,3
� and shows that the tempera-
ture fluctuation fields are linear functions of the macroscopic
temperature gradient

�ijT�
�1�� = �ij��

�1�� · �x�T�0��

and

���Ti
�1�� = ����i

�1�� · �x�T�0��. �14�

The components ��i�
�1���k of the solution vector �i�

�1�� corre-
spond to the temperature fluctuations obtained at each node
when �x�T�0��= êk.

βp

αp*
βiM

*
αiM

*
αjM

*
αlM

αib
*s

ijl α

αijê s
ilαê

αilê

s
ijαê

*
αijl

FIG. 1. Scheme of a REV �volume �REV
� � made of PREV slender

and entangled wavy fibers p� �volume ��
�� of length l�

� . Node Mi�
�

refers to the projection on the center line of p� of the ith contact
point. êij� refers to the local unit vector tangent to the center line of
fiber p� between node Mi�

� and Mj�
� , and êij�

s refers to the straight
unit vector between these nodes. The darker part of fiber p� repre-
sents the bar bi�.
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Hence, by accounting for geometrical and physical as-
sumptions and by using a finite volume technique, the con-
tinuous localization problem �6a�–�6e� is now written in a
reduced discrete form.

D. Discrete form of the macroscopic heat flow
for models I and II

By accounting for Eq. �6a� and by noting yi�
� =Mi�

� M�, it
is possible to write

q�
�1�� = �yi�

�
� q�

�1��� · �y�, �15�

for all material points M� in bi�. From this relation, by ap-
plying the divergence theorem and by using Eqs. �6b�, �6c�,
and �8�, the macroscopic heat flow qe� defined in Eq. �7� can
be set in the form

qe� =
1

�REV
� �

PREV

�
B�


�
�ij�

�
�yi�

�
� qij�

�1��� · êij�dS� + �
�il�

�
�yi�

�

� qil�
�1��� · êil�dS� + �

�i��
�

�yi�
�

� qi��
�1��� · êi��dS�� . �16�

By using the summation on the ij� junctions and on the i��
connections and by noticing yi�

� −yi�
� =yi��

� and yi�
� −y j�

�

=yij�
� , the last expression now reads

qe� =
1

�REV
� �

JREV

�
�ij�

�
�yij�

�
� qij�

�1��� · êij�dS�

+
1

�REV
� �

CREV

�
�i��

�
�yi��

�
� qi��

�1��� · êi��dS�. �17�

By accounting for Eqs. �14�, �9�, and �11�, the discrete form
of the macroscopic heat flow �17� can therefore be expressed
as a standard Fourier’s law,

qe� = − �e� · �x�Te�, �18�

which discrete expressions of �e� are given in the next sec-
tion.

E. Discrete form of the effective conductivity tensor
for all models

1. General expressions

From the discrete forms of the macroscopic heat flow �Eq.
�17� for models I and II and Eq. �5� for model III�, it is then
possible to deduce a discrete formulation of the effective
conductivity tensor for each model in case of media made of
entangled slender and wavy fibers:

�i� In the case of model II, by introducing Eqs. �9� and
�11� into Eq. �17�, the effective conductivity tensor reads as

�e� = �fib
e� + �cont

e� , �19�

with

�fib
e� =

1

�REV
� �

JREV

��
�S�

� lij�
s�

�ij�
êij�

s
� 
�ij��

�1��

lij�
s�

+ êij�
s � �20�

and

�cont
e� =

1

�REV
� �

CREV

�i��
� h̃i��

� di��
� êi�� � ����i

�1��. �21�

Conductivity tensors �fib
e� and �cont

e� stand, respectively, for
the contribution of the core of the fibers and the contribution
of fiber-fiber contacts to the overall conductivity tensor �e�.

�ii� In the case of model I, when the quality of contacts is
perfect, �cont

e� vanishes and �e�=�fib
e� by accounting for Eq.

�10�.
�iii� In the case of model III, when the quality of contacts

is very poor, a discrete form of the effective conductivity
tensor has directly been deduced from Eq. �5� �which has
already been derived in paper I�,

�e� = C1
 1

CREV
�

CREV

�i��
� h̃i��

� y��
�

� �y��
� + �����1���� ,

�22�

where y��
� =G�

�G�
� , C1 is the number of fiber-fiber connec-

tions per unit of volume, and where the components ���
�1���k

of the solution vector ��
�1�� correspond to the temperature

fluctuations T̄�
�1�� when �x�T�0��= êk.

2. Semianalytical expressions for models I and III

Considering the discrete localization problems �13� �re-
spectively, Eq. �3� for model III�, it is possible to show that
for some types of regular fibrous arrangements, the tempera-
ture field at every contact points �respectively, at every cen-
ters of mass for model III� is an affine function of the posi-
tion of the considered point in the REV. Supposing these
assumptions can be stated for every microstructure �this will
be discussed in Sec. III�, the following semianalytical esti-
mations of the conductivity tensors can be established.

In the case of model I, the affine assumption yields to
suppose that �ij��

�1���0. From this hypothesis, the conduc-
tivity tensor can be estimated by

�e� = �fib
e� � �

PREV

���
��

D�

f ij�êij�
s

� êij�
s � , �23�

where f ij�=S�
� lij�

s� / ��ij��REV
� � stands for the volume fraction

of the piece of fiber p� between nodes Mi�
� and Mj�

� .
In the case of model III, the affine assumption, which is

analogous to the one stated by Batchelor �13� in the case of
spherical particles, reads as �����1���0. The conductivity
tensor �22� then becomes

�e� � C1
 1

CREV
�

CREV

�i��
� h̃i��

� y��
�

� y��
� � . �24�

Moreover, for slender fibers, it is fair to consider that

y��
� = si�

� ê� + 2di��
� êi�� − si�

� ê� � si�
� ê� − si�

� ê� �25�

noting G�
�Mi�

� =si�
� ê� and G�

�Mi�
� =si�

� ê�. Hence, for slender
fibers, the previous conductivity tensor can be approximated
by
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�e� � C1
 1

CREV
�

CREV

�i��
� h̃i��

�

	�si�
� ê� − si�

� ê�� � �si�
� ê� − si�

� ê��� . �26�

Therefore, estimations �23�, �24�, and �26� only require the
knowledge of the geometry of the fibrous microstructures. In
the next section, their validity will be discussed from nu-
merical results in the case of networks of disordered straight
fibers. Finally, note that in the case of model II, no semiana-
lytical expression can be obtained.

F. Straight, monodisperse, and homogeneously distributed
fibers with circular cross section

In order to further simplify the above semianalytical ex-
pressions, let us now consider that fibers p� are straight, with
a constant length lfib

� , a circular cross section of constant

radius a�, a constant averaged heat transfer coefficient h̃�, a
constant in-axis conductivity �fib

� , and with an orientation
vector noted ê�. Moreover, let us assume that the considered
fibrous microstructures are such that contact surfaces �i��

�

are nearly identical, i.e., ∀ i��, �i��
� ���=k
a�2, where k

is a positive constant. Likewise, fibers are supposed to be
homogeneously distributed in the REV. Hence, using, for
instance, the statistical geometrical tube model �33–36�, it is
then possible to estimate the average number of connections
per fiber,

C̄� � 4f
 lfib
�


a�
�1 + �2 + 1� , �27�

and the number of fiber-fiber connections per unit of volume
in the REV,

C1 �
f

2
a�2lfib
� C̄�, �28�

where f = PREV
a�2lfib
� /�REV

� is the volume fraction of fibers
and where the descriptors �1 and �2 can be estimated from
the fiber orientation distribution function �ODF� set in its
continuous form �35� or its discrete form �36�, as done in this
work,

�1 =
1

PREV
2 �

PREV

�
PREV

� ê� 	 ê�� , �29a�

�2 =
1

PREV
2 �

PREV

�
PREV

�ê� · ê�� . �29b�

It can be shown �35� that �1, respectively, equals 
 /4, 2 /
,
and 0 when the orientation of fibers is three-dimensional
�3D� random, two-dimensional �2D� random, and unidirec-
tional, whereas �2, respectively, equals 1/2, 2 /
, and 1 for
the same types of oriented microstructures.

1. Expressions of the effective conductivity tensors

Under the above assumptions, simpler expressions of ef-
fective conductivity tensors can be obtained.

In the case of model II, the effective conductivity tensor
still reads as �e�=�fib

e� +�cont
e� . The core contribution �20� can

be rewritten as

�fib
e� = �fib

� 
a�2

�REV
� �

PREV

�
J�

�lij�
� ê� � ê� + ê� � �ij��

�1��� .

�30�

By introducing �i� the two extreme nodes Mi−�
� and Mj+�

� of
the particle p�, �ii� the length between the extreme nodes
li−j+�
� =�J�

lij�
� , which is the length of “the active part” of fiber

p�, �iii� l̃� as its average value over the whole REV, �iv� k�

= li−j+�
� / l̃�, and �v� �i−j+T�

�1�� the difference of the temperature
fluctuations between the extreme nodes, Eq. �30� yields

�fib
e� = �fib

� 
a�2l̃�

�REV
� �

PREV

k�ê� � 
ê� +
�i−j+��

�1��

k�l̃�
� . �31�

As contacts on each fiber are supposed to be homogeneously
distributed, it is fair to consider that k��1. By expressing

the averaged active length of fibers l̃� as a function of both
the length of fibers lfib

� and the averaged number of connec-

tions per fiber, C̄�, i.e.,

l̃� = lfib
� 
1 −

1

C̄�

� , �32�

it becomes

�fib
e� � f
1 −

1

C̄�

��fib
� �A +

1

PREV
�

PREV

ê� �
�i−j+��

�1��

lfib
� 
1 −

1

C̄�

�� ,

�33�

where

A =
1

PREV
�

PREV

ê� � ê� �34�

stands for the second-order fiber orientation tensor �37�. The
fiber-fiber contact contribution �21� simplifies to

�cont
e� � 2C1k
a�3h̃�

1

CREV
�

CREV

± êi�� � ����i
�1��, �35�

where

êi�� = ±
ê� 	 ê�

� ê� 	 ê��
, �36�

and the sign ± is chosen such that êi�� ·y���0. Combined
with Eqs. �27� and �28�, the above expressions underline the

influences of the local physical properties �fib
� and h̃�, the

geometry of fiber a� and lfib
� , the volume fraction of fibers f ,

and the orientation of fibers ê�, A, �1, and �2, on the effec-
tive conductivities.

In the case of model I, the effective conductivity tensor
simplifies to �e�=�fib

e� , i.e., to Eq. �33�.
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In the case of model III, under identical assumptions, and
for fibers with a high aspect ratio, expression �26� becomes

�e� � C1k
a�2h̃���1 + �2 + �3� , �37�

where

�1 =
1

CREV
�

PREV

C�IG�

� ê� � ê�, �38�

�2 = −
1

CREV
�

CREV

si�
� si�

� �ê� � ê� + ê� � ê�� , �39�

�3 = −
1

CREV
�

CREV

�si�
� ê� − si�

� ê�� � �����1��, �40�

and

IG�

� =
1

C�
�
C�

�si�
� �2. �41�

By considering that C�� C̄� and that IG�

� does not depend on
the particle p�, i.e., ∀ � , IG�

� � IG
� , an estimation of IG�

� is

IG�

� � IG
� �

lfib
�2

12
1 −
1

C̄�

� . �42�

This finally yields to the above estimation of �1,

�1 �
lfib
�2

6 
1 −
1

C̄�

�A . �43�

2. Analytical expressions for models I and III

By using the approximations adopted in Sec. II E 2 for the
temperature fields, i.e., �i−j+��

�1���0 and �����1���0, re-
spectively, for models I and III, and by accounting for Eqs.
�27� and �28�, it is possible to obtain very compact analytical
estimations of conductivity tensors for fibrous microstruc-
tures displaying 3D-random ��1=
 /4,�2=1 /2�, 2D-random
��1=2 /
 ,�2=2 /
�, and unidirectional ��1=0 ,�2=1� fiber
orientation, but also if another ODF is given.

In the case of model I, the conductivity tensor �33� can be
estimated by

�e� = �fib
e� � f
1 −

1

C̄�

��fib
� A , �44�

In the case of model III, tensor �3 Eq. �40� equals 0. More-
over, it will be assumed that �2�0 �cf. next section�. There-
fore, Eq. �37� can be set in the form

�e� � C1k
a�2h̃�
lfib
�2

6 
1 −
1

C̄�

�A . �45�

III. NUMERICAL ILLUSTRATIONS AND DISCUSSION

In this section, the influence of the volume fraction and
the orientation of fibers on the previous discrete expressions

of the macroscopic conductivity tensors is illustrated quanti-
tatively. First, direct numerical calculations are performed
using discrete element models �Sec. III A�. Second, the rel-
evance of the assumptions stated to derive the semianalytical
�23� and �26�, and the analytical expressions �44� and �45� is
discussed �Sec. III B�.

A. Discrete element models

In order to compute the effective conductivity tensors,
cubic REV’s of volume lREV

�3 =53 made of PREV straight fibers
�constant length lfib

� =5� with a circular cross section �con-
stant radius a�=0.05� were stochastically generated accord-
ing to a methodology similar to that used in Ref. �36�.

�i� Centers of mass G�
� of each fiber p� were ascribed to

random positions in the REV.
�ii� Gaussian distributions of the orientation vectors ê�

were then imposed. Here, three types of oriented microstruc-
tures were generated, the principal vectors êI, êII, and êIII of
their corresponding orientation tensors A being, respectively,
equal to ê1, ê2, and ê3: �i� isotropic microstructures with 3D-
random fiber orientations, i.e., with AI�AII�AIII�1 /3 �see
Fig. 2�a��, �iii� nearly planar fibrous microstructures, i.e.,
with AI /AII�1 and AI /AIII�50 �Fig. 2�b��, and �ii� nearly
unidirectional fibrous microstructures, i.e., with AII /AIII�1
and AI /AII�AI /AIII�20 �Fig. 2�c��.

�iii� A connection between fibers p� and p� was detected
and added to the set CREV as soon as p� and p� intersect.
Moreover, we have simply assumed that the surface of con-
tact �i��

� =
a�2 so that k=1.
�iv� In order to estimate effective conductivity tensors for

models I and III, the conductivity of the fibers �fib
� as well as

the heat transfer coefficient h̃� were both set arbitrarily to 1.
Thereby, a discrete element code that was initially devel-

oped to model the rheology of highly concentrated and non-
Newtonian fiber-bundle suspensions �36,38�, was modified in
order to solve the two different linear localization problems
�13� �with the last term equal to 0� and �3�, respectively,
associated with models I and III. Three calculations with
independent unit macroscopic temperature gradients were
necessary for each REV to obtain the �ij��

�1��’s for model I
as well as the �����1��’s for model III. Computed values of
the temperature fluctuations were then, respectively, intro-
duced in Eqs. �30� and �26� in order to obtain numerical
values of macroscopic conductivity tensors for models I and
III. For each given set of microstructural parameters, the cal-
culation was performed with 20 REV’s. Notice that the same
microstructures have also been used to estimate the conduc-
tivity tensor predicted by the semianalytical expressions �23�
and �24�, respectively, for model I and III. Finally, analytical
expressions �44� and �45� have been estimated using two
different methods to obtain descriptors �1 and �2: by com-
puting Eqs. �29a� and �29b� with the discrete ODF’s of the
REV’s, or by approximating them by their values for per-
fectly 3D-random, 2D-random, and unidirectional fiber ori-
entation. These two ways of computing the analytical models
will be referred to in the following as the determinist and
statistical models, respectively.
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B. Results and discussion

Results given by numerical and �semi�analytical models
are given in Figs. 3–5. In Fig. 3 the evolutions of the simu-
lated principal effective conductivities �I

e�, �II
e�, and �III

e�

with f have been plotted for models I and III. In Figs. 4 and
5, the evolutions of the scalar quantities �I

e� /AI , �II
e� /AII

and �III
e� /AIII, given by the numerical and �semi�analytical

approaches, as functions of the volume fraction of fibers f
have been sketched for models I �Fig. 4� and III �Fig. 5�.
Results have been obtained with isotropic �Figs. 3�a� and
3�b�, Figs. 4�a� and 4�b�, and Figs. 5�a� and 5�b��, nearly
planar �Figs. 3�c� and 3�d�, Figs. 4�c� and 4�d�, and Figs. 5�c�
and 5�d�� and nearly unidirectional �Figs. 3�e� and 3�f�,
Figs. 4�e� and 4�f�, and Figs. 5�e� and 5�f�� fibrous networks.
From these figures, the following comments can be estab-
lished.

1. Influence of microstructure parameters

Numerical results plotted in the graphs of Fig. 3 first show
that for REV’s generated with the same microstructure pa-
rameters, the scattering of the results is rather weak �see the
error bars�. Consequently, only their mean values will be
plotted in the other figures. Figure 3 also clearly emphasizes
the leading role of both the fiber content and orientation on
the �i

e�’s. Whatever the fiber orientation, they also show that
the increase of the �i

e�’s with the fiber content is stiffer for
model III than for model I. For example, in the very concen-

trated regime, i.e., approximately for f 
0.1, the �i
e�’s tend

to be linear and quadratic functions of the fiber content for
model I and model III, respectively. Likewise, when f 
0.1,
numerical results sketched in Figs. 4�a�, 4�c�, and 4�f� reveal
that the anisotropy of the effective conductivity tensors for
model I is closely linked with the anisotropy of the fiber
orientation tensor: the �i

e� /Ai �no summation on the index i�
are nearly identical, whatever the considered index i. Notice
that a similar trend was obtained for dilute fiber suspensions,
i.e., for a local physics different from that studied here
�30,32�. However, this trend is not systematically preserved,
especially in the case of model III. For example, for almost
unidirectional fibrous networks �Fig. 5�e��, when f =0.4, the
values of �I

e� /AI are approximately 50% lower than those
recorded for �III

e� /AIII �=�II
e� /AII�.

2. Numerical vs semianalytical solutions

Semianalytical estimations of the �i
e� /Ai’s have also been

reported in Figs. 4�a�, 4�c�, and 4�e� and Figs. 5�a�, 5�c�, and
5�e�. They follow the trends given by direct numerical results
but overestimate them. In the concentrated regime, this de-
viation is fairly small �relative error �25%� for isotropic as
well as planar fibrous networks. By contrast, for almost uni-
directional microstructures, the relative error becomes pro-
nounced. For examples, when the fiber content varies from
f =0.1 to f =0.4, the relative error decreases from �50% to
�10% for model I and from �70% to �15% for model III.
The observed discrepancies are ascribed to the forms stated
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FIG. 2. �Color online� Examples of fibrous REV’s generated numerically �fiber content f =0.2�—3D-random �a�, nearly planar �b�, and
nearly unidirectional �c� fibrous networks with their corresponding orientation tensors A. Cylinders plotted in the 3D views �d�, �e�, and �f�
are, respectively, associated with fibrous networks �a�, �b�, and �c�, they represent vectors normal to fiber-fiber contacts.
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for temperature fields when establishing semianalytical
models. To illustrate this, we have plotted in graphs of Fig. 6
the evolution of the local temperatures T�

� at each center of
bars for model I �Figs. 6�a� and 6�b�� and each center of
fibers for model III �Figs. 6�c� and 6�d��, as functions of the
centers’ abscissa in the REV. In this figure, the fiber content
is fixed to f =0.3 while isotropic and nearly unidirectional
microstructures are considered. Temperatures obtained with
direct numerical simulations �empty marks� are compared
with an affine distribution of temperatures �lines�, when
REV’s are subjected to a unit macroscopic temperature gra-
dient along ê1. Lines corresponds to the assumption stated to
derive semianalytical and analytical models, i.e., �ij��

�1��

�0 and �����1���0. As shown from this figure, the devia-

tion of direct numerical results from the affine distribution is
rather weak for isotropic fibrous networks: the mean devia-
tion represents �±2% of the mean temperature variation in
the REV’s for model I �Fig. 6�a��, and 2 times higher for
model III �Fig. 6�c��. By contrast, the affine distribution as-
sumption becomes more questionable for nearly unidirec-
tional fibrous networks, since the relative deviation is above
±5% for model I �Fig. 6�b�� and ±10% for model III �Fig.
6�d��. Also notice that when the volume fraction of fibers
increases, results show that deviations are decreasing faster
for model I than for model III. This can explain why the
relative error between numerical simulations and semiana-
lytical calculations decreases slower for model III �Figs. 5�a�,
5�c�, and 5�e�� than for model I �Figs. 4�a�, 4�c�, and 4�e��.
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FIG. 3. Direct numerical re-
sults: Evolutions of the compo-
nents �I

e�, �II
e�, and �III

e� of the ef-
fective conductivity tensor �e� as
functions of the fiber content f for
3D-random �a� and �b�, nearly pla-
nar �c� and �d�, and nearly unidi-
rectional �e� and �f� microstruc-
tures. Numerical results with
fibers’ length lfib

� =5, fibers’ radius
a�=0.05, and a unit thermal con-
ductivity �fib

� =1 for model I �a�–
�e� as well as a unit heat transfer

coefficient h̃�=1 for model III
�b�–�f�.
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3. Semianalytical vs determinist expressions

Figures 4�b�, 4�d�, and 4�f� and Figs. 5�b�, 5�d�, and 5�f�
show that semianalytical models �gray lines� are fairly well
estimated by determinist models �black circles� at high fiber
content �f 
0.1� with isotropic fibrous microstructures. This
is still the case for model I with nearly planar and unidirec-
tional microstructures �Figs. 4�d� and 4�f��. For model III,
determinist predictions �45� are less satisfactory for aniso-
tropic microstructures, even if the general trend is preserved.
In particular, the black circles cannot capture the difference
of anisotropy recorded between the different directions �e.g.
between continuous and dashed-dotted gray lines�. We have
checked that this discrepancy could not be ascribed to as-

sumption �25� that has been used to establish analytical mod-
els. As an example, Fig. 7 represents semianalytical and ana-
lytical predictions for planar fibrous microstructures with
different fiber aspect ratio �5� lfib

� / �2a���80� and a fiber
content f =0.2. This figure shows that for slender fibers, i.e.,
when lfib

� / �2a��
40, results obtained with the approximated
semi-analytical model �26� �whites marks�, i.e., with assump-
tion �25�, are almost superimposed with those obtained with
the semianalytical model �24� �gray lines�, i.e., without as-
sumption �25�, and do preserve the difference of anisotropy
recorded between the different directions. Thus, assumption
�25� is correct for slender fibers �lfib

� / �2a��
40� which are
discussed in this section. By contrast, the same figure shows
once again that the determinist analytical model �black
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FIG. 4. Model I: Evolutions of
the scalar �i

e� /Ai’s where �e� is
the effective conductivity tensor
and A is the second-order orienta-
tion tensor. These evolutions are
plotted as functions of the fiber
content f for 3D-random �a� and
�b�, nearly planar �c� and �d�, and
nearly unidirectional �e� and �f�.
Comparison between semianalyti-
cal �gray lines� and numerical
�black lines� �a�–�e� as well as be-
tween semianalytical �gray lines�
and both determinist �black
circles� and statistical �black lines�
analytical estimations �b�–�f�.
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circles� cannot capture these trends. Consequently, this tends
to prove that tensor �2, which reflects the role of the relative
position and orientation of connected fibers, and which has
been neglected in order to obtain the analytical solution for
model III, should not systematically be neglected in the ex-
pression of the effective conductivity tensor. It contributes to
induce an additional anisotropy different from that induced
by the fiber orientation tensor A.

4. Determinist vs statistical solutions

The determinist model �black circles� and the statistical
model �black lines� follow the same evolution in the case of
isotropic �Figs. 4�b� and 5�b�� and planar fibrous networks

�Figs. 4�d� and 5�d��. This shows that the as-generated
REV’s contain a sufficient number of fibers and follow the
statistics of tube model. This is not the case for the nearly
unidirectional fibrous microstructures �Figs. 4�f� and 5�f��.
The observed error is mainly ascribed to the fact that the
descriptor �1 appearing in Eq. �27� was set to zero for the
calculation of the statistical analytical estimation, whereas
the generated fibrous networks are not perfectly unidirec-
tional, i.e., their �1 is not exactly equal to 0. For the consid-
ered orientations and slender fibers, small variations of �1

near 0 can yield significant variations of lfib
� �1 /
a�, of C̄�

and C1, and consequently of the analytical predictions �44�
and �45� used to determine the �i

e� /Ai’s.
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FIG. 5. Model III: Evolutions
of the scalar �i

e� /Ai’s where �e�

is the effective conductivity tensor
and A is the second-order orienta-
tion tensor. These evolutions are
plotted as functions of the fiber
content f for 3D-random �a� and
�b�, nearly planar �c� and �d�, and
nearly unidirectional �e� and �f�.
Comparison between semianalyti-
cal �gray lines� and numerical
�black lines� �a�–�e� as well as be-
tween semianalytical �gray lines�
and both determinist �black
circles� and statistical �black lines�
analytical estimations �b�–�f�.
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IV. CONCLUDING REMARKS

When neglecting diffusion in the surrounding matrix, the
transient diffusion through a network of connected conduc-
tive particles having interfacial barriers on their contacting
zones have been studied theoretically with the homogeniza-
tion method of multiple scale expansions in paper I of this
contribution. Three different models have been obtained de-
pending on the quality of fiber-fiber contacts: model I for
highly conductive contacts, model III for highly resistive
ones, and model II for intermediate situations. In this paper,
we have proposed an application of these models for net-
works of slender and wavy fibers. Attention was focused on
the calculation of the effective conductivity tensors, from
localization problems established in paper I. The following
points summarize the main results of this study.

�1� By accounting for the slender shape of fibers, simpli-
fying physical assumptions have been stated for the conduc-
tion in and between fibers for models I and II. This allowed
us to obtain discrete formulations of the localization prob-
lems and discrete expression of the effective conductivity
tensors, as already presented for model III in paper I.

(a)

(c)

(b)

(d)

FIG. 6. Evolution of the temperature T�
� with the abscissa of the centers of bars XMi�

� for model I �a� and �b� and with the abscissa of the
centers of fibers XG�

� for model III �c� and �d�. Comparison between direct numerical results �empty marks� and affine distributions �lines�
for isotropic �a� and �c� and unidirectional �b� and �d� microstructure.
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FIG. 7. Influence of the aspect ratio of fibers �lfib
� /2a�� on semi-

analytical �24� and �26� as well as analytical estimations �45� for
planar microstructures with resistive contacts �model III� and fiber
volume fraction f =0.2.
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�2� Semianalytical expressions of the macroscopic con-
ductivity tensors have been obtained for models I and III by
fixing a priori the form of the temperature fields. These mod-
els only require the knowledge of the fibrous microstruc-
tures.

�3� Following the same procedure, analytical expressions
of macroscopic conductivity tensors have also been proposed
for models I and III in the case of straight, monodisperse,
and homogeneously distributed cylindrical fibers with circu-
lar cross sections: �i� a determinist one for which it is only
necessary to know the �discrete or continuous� orientation
distribution function of fibers in order to estimate descriptors
�1 and �2, �ii� a simplified one which gives direct results for
isotropic, planar, and unidirectional fibrous microstructures.

�4� The effective conductivity tensors have also been
computed using two discrete element codes, i.e., one for
model I and another for model III. Results have emphasized
the leading role of the fiber content on macroscopic conduc-
tivity tensors. Moreover, as the fiber content increases, these
tensors tend to evolve like linear or quadratic functions of
the fiber content when the quality of contact is excellent or
poor, respectively. Likewise, numerical results have shown
that the anisotropy of conductivity tensors was closely linked
with the second-order fiber orientation tensor. Nonetheless,
when fiber-fiber contacts are poor, numerical results have

shown that the use of the second-order orientation tensor was
not sufficient to capture the whole anisotropy of conductiv-
ity, especially in the case of nearly aligned microstructures.

�5� The proposed �semi�analytical estimations of the ef-
fective conductivity have been compared with numerical re-
sults. Semianalytical expressions give rather good approxi-
mations of the effective conductivity tensors for concentrated
regimes. Their difference with numerical results remains
within 70% whatever the orientation or the quality of con-
tacts is, but within 40% if unidirectional microstructures at
f =0.1 are not taken into account. Such error diminishes as
the fiber and the quality of contact increase, and as the an-
isotropy of microstructures decreases. The determinist and
the statistical analytical models give correct trends, despite
their simplicity. Nevertheless, in the case of anisotropic mi-
crostructures and poor fiber-fiber contacts, they cannot cap-
ture the whole anisotropy of the conductivity tensor. In those
cases, analytical models should account for the relative po-
sition and orientation of contacting fibers.
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